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STRESSES AT THE INTERSECTION OF TWO CYLINDRICAL
SHELLS OF EQUAL DIAMETER

M. V. V. MURTHY

National Aeronautical Laboratory. Bangalore. India

Abstract-The stresses at the intersection of two cylindrical shells of equal diameter. joined over a plane elliptic
face and subjected to internal pressure, are analysed. The results are valid for all possible values of the angle
between axes of the two shells. Errors of the order of (h/a)t are .admitted, where h and a denote thickness and
radius of the shells respectively. Results are given in the form of simple formulae for stresses near the plane of
intersection. A graph is given from which the stress concentration factor, based on distortion energy, can be
directly read over a wide range of parameters.
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mean diameter and thickness respectively of either shell
angle between axes of the two shells (Fig. I)
= tan CI:

Young's modulus
Poisson's ratio
= [3(1- v2 )J*(a/h}t
uniform internal pressure
distance, measured from a plane normal to shell axis (Fig. 2) and non-dimensionalized through a
angular coordinate (Fig. 2)
distance from the plane of intersection, measured parallel to shell axis (Fig. 2) and non
dimensionalized through a
= [3(I-v2)J*(a/h)t(1+A2 sin2 8)-I.

obliqueness of local tangent (Fig. 3)
normal distance measured from the oblique edge (Fig. 3) and non-dimensionalized through a
Ii coordinate at the foot of normal to the oblique edge (Fig. 3)
directions, on the middle surface of the shell, perpendicular to and along the line z = constant
membrane stress resultant forces (Fig. 4) non-dimensionalized through pa
stress resultant couples (Fig. 4) non-dimensionalized through pah
transverse shear forces (Fig. 4) non-dimensionalized through pa
displacement components (Fig. 2) in the axial, circumferential and radial directions respectively,
non-dimensionalized through pa2

/ Eh
stress function
complex stress-displacement function (W +i<l», where i = v' - 1
stresses in ~ and '1 directions, non-dimensionalized through pa/h (Fig. 4)

1. INTRODUCTION

IN THIS paper, analytical solutions are presented for stresses around the unreinforced
intersection of two, long, thin circular cylindrical shells of equal diameter joined over a
plane elliptic face and subjected to uniform hydrostatic pressure (Fig. 1). This problem
is of considerable practical importance, because it is encountered frequently in high
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FIG. 1. Pressurized junction of two cylindrical shells.

pressure pipe lines. The ends of the two shells are assumed to be closed and situated far
away from the plane of intersection. Free displacements are allowed and no restriction is
placed on the value of a. Throughout this paper, terms of order 1//3 are neglected in
comparison with unity. In other words, errors of order (hla)1 are admitted.

The earliest attempt on the theoretical solution of a related problem was made by
Kornecki [1]. Kornecki considered the problem of a cylindrical shell subjected to uniform
pressure and clamped along an oblique end section. Corum [2J carried out an analysis of
the same problem for seven different loading cases, namely internal pressure* and three
mutually perpendicular moments and perpendicular forces applied at the free end. Results
of extensive experimental work are also given in Corum's paper. The problems considered
by Kornecki [IJ and Corum [2J are equivalent to the problem of two cylindrical shells
joined over an elliptic face and reinforced by an infinitely rigid ring along the line of
intersection. This paper deals with the problem of unreinforced intersection, which is
different from those of both Kornecki and Corum.

The problem treated here has been examined earlter in references [3J~[5J. Van der
Neut's solution [3J, although valid for all values of ex and carried to the same degree of
approximation as thts analysis, leads to an impossible state of stress at \"='x:, The
solutions lTl references [4] and [5J are restricted to small values or rx and lead to exactly
identical results. In reference [4J, the method of three dimensionallmear elasticIty is used.
whereas the solution given in reference [5J is based on a shell theory approach.

Van der Neut's solution [3J leads to the conclusion that the longitudinal membrane
forces at x = 'XJ should be of the form

N x = !(1+ ),2 cos 20). (I)

It should be noted that N x , in equation (1), IS nondimensionalized as indicated in the
Notation. Evidently, equation (1) has to be rejected mathematically, because we know
from shell theory that any stress system with a sinusoidal variationt along the circumference
of a cylindrical shell can only vary exponentially in the axial direction and cannot remain
constant.

* For the case of internal pressure. the results of Corum are identical with those of Kornecki [I].
t Except the zero and first harmonics.
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In Van der Neut's analysis, only the rapidly decaying stress system is considered to
satisfy the boundary conditions. The shell equations have another type of solution
corresponding to a slowly decaying stress system with a larger decay length. It is shown
in this analysis that by taking this into account, the anomalous stress distribution, as in
equation (1), can be avoided and a completely satisfactory solution can be obtained to the
degree of approximation stated. In references [4J and [5J, although only rapidly decaying
stresses are considered, this inconsistency does not show up, because IY. is taken to be small
and A. 2 is neglected everywhere in comparison with unity. Equation (1) then yields the
classical value for N x at x = co.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

All distances, stresses, stress resultant forces, stress resultant couples and displacements
in this analysis are non-dimensionalized through a, pa/h, pa, pah and pa 2/Eh respectively.

We define a "residue problem" as the stress problem of the cylindrical shell subjected
to certain edge loads at z = 0, which produce stresses decaying to zero as z -'> (I) and
which, if added to the uniform stress field due to internal pressure

(2}--{4)

(5)

satisfy the required boundary conditions at the plane of intersection. In the following
analysis, a solution is obtained for this residue problem and subsequently added to the
uniform state of stress, equations (2)·(4).

2. I Governing equations

The governing equations used are Donnel's equations for circular cylindrical shells.
The original Donnel's equations [6J are in the form of three equations for the three dtS

placement components U, Vand W It is possible to reduce these three equations to a
single equation for F, which, in the absence of normal pressure, can be written in the
followmg form. It should be noted that the normal pressure is taken to be zero, because
here we solve the residue problem, which is only an edge load problem

4 ,J el 2 F(x, 0)
\7 F(x. 0) +2Tfj- -~-o- - = 0

, tx·

where

and the stress resultants can be detemuned from F by using the relations

I a2(J)(x. iJ)
IV x = - 27j2 ~'1{}'i

I (12(J)(X, I~)

IV8 = -2/j2

I a2<D(;;. 0)
IV x8 = "--, ..- ----.---.-

2/3- iJx?O

{hl

(7)

(8)
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j [D 2 W(X, el W(X, (J)]
1'\1x 2,62[12(1- \l2)]!' OX2 + v-~"Oe2 .

1 ra 2 W(x, e) D2 W(X,Ol]
MI) 2/52[12(1- v2)]~L-a~+ II- GX2 ,

(1- v) a2 w(x,O)
Mxl) = 2/52[12(1- 1'2)J1 - a.~ao-

Q __I_[~_~,(X' fl) +~j3W(,X'!lJ
x - 4/54 ax3 Dxa02

1 ra3,W(X,' 0) , a3
W(x, e)]

Q041J4L·ax2M..J--~ .

Sign conventions for the stress resultants are shown in Fig. 4.

nOI

; 12)

(13)

2.2 Boundary conditions

Figure 5 shows the trace of middle surface of the shell on the plane of ::1tersection.
Sl and S2 denote shear forces per unit length, acting in the plane of intersection in
directions parallel to the major and minor axes of the ellipse. M 12 denotes the twisting
moment per unit length of the elliptic boundary and vector M 12 is normal to the plane of
intersection. Since the plane of intersection is also a plane of symmetry, it follows that
there can be no shearing stresses in the plane of intersection and Sl' S2 and M 12 should
vanish individually; i.e.

04H16)

07)

The other boundary conditions follow from the deformation of the plane of inter
section. From symmetry considerations, rotation of the middle surface of the shell in a
direction normal to the edge should be zero:

[aW~~2.~)l = o.
cz ==0

t \~ I

I-- oc--! "---PLANE OF INTERSECTION
: x" ;.. cose

\
\

\

.. J_ ..
~:'een I····_- ax j/v
u':-Y_'~~~-~"""-I-------_..""':,-<------j----'~

''-w

FIG. 2. Middle surface of shell.
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FIG. 4. Stresses and stress resultants. O-Downward; @--Upward.

Another condition, which follows from symmetry, is that all points on the plane of
intersection should remain to be in a plane even after loading. In other words, if the
structure is restrained against rigid body displacement and rotation, the displacement
component normal to the plane of intersection should vanish. This means

[.t(WCOS e . (1 + v) ]V sm 8) - U +-2-Acos e = o.
z= 0

(18)

The last term in the foregoing equation arises from the uniform stresses, equations (2}-(4).
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FIG. 5. Middle line of elliptIc interface.

We have five boundary conditions (14)-(18), whereas the governing equation is only of
the fourth order. The usual way of overcoming this difficulty is to replace the threc can·
ditions (14HI6) by only two equations. uSlllg the KirchhotT shear type of boundary
condition. But. in this particular analysis, the five boundary conditIOns arc retained as
they are. because it is found that, by a coincidence. all these five conditions on be satIsfied
to the degree of accuracy to which thIS analY'>ls b earned. But :t Ofl('. lIkes (0 proceed w
higher approximation. the KirchhotT shea! rmh\ Ix: lnHodu'.(C('

S 1.52 and /\1 17 can be expressed in ternh of stress resuILtnl kllces '1nd couples tile

relations

cos VI ~os :x(
(10\
,1 7 ,

+ SID (I: ]V <II + A ,in III 1 +]V

\1 i COS '.~ COSY: M / Sin Ii· 1

The quantltles ~. and lImty. adJacenl to N
(20) correspond 10 the umform stlc:;ses. equal

local tangent (Fig. :q and
tan ~J

and :J respectively, in equations (19) and
(/i(4). ljJ represents the obliqueness of

I;m Ii

3. SOUJTlO"l

Equation (5) can be split into two equations of second order:

-7 •• «,.DFdx,1ilV- F1Lx, In _. (1- I);, --c, 0
(' \.

V"F2(X,III+(1-0/1
: ' \.

(-:3.1
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By separatIOn of variables, solution of equation (23) can be written as

'A

F1 = I (An + iBn) eknx cos n(l.
n="OO.l.2 ...

H85

(25)

Only cosine terms in 0 are chosen in equation (25), because the stress system should be
even in O. An' Bn are real constants and

(26)

kn has, therefore, two roots; the real part of one root is positive, whereas the real part
of the other root is negative. We have to select only that root for which the real part is
negative, because stresses in the residue problem should tend to zero as z -+ CfJ. We now
make an assumption that the boundary conditions can be satisfied with the first few values
of n in equation (25). It will be actually found during the process of satisfying the boundary
conditions that we need, in fact, only one term in equation (25) corresponding to n = 2.
For small values of n, kn from equation (26) can be written as

kn = _0 ;i)nll-H~r-~(~r+ .. .J = O(I/P)·

We write An and Bn also in powers of I/P

(27)

(30)

(29)

I I
(An+iBn) = [An(o)+iBn(OlJ+p[An(t)+iBn(llJ+ pZ [A n(2)+iBn(zlJ + .... (28)

Since the edge loads are applied at z = 0, it is convenient to work with the oblique co
ordinates (z, fJ). z and x are connected by the relationship (see Fig. 2)

z = x - A. cos O.

By means of equations (27)-(29), we can write equation (25) in the form

rl
F)= lI {An(o) + iBnlO ,} ek"o cos nO] + OO/f]).

The symbol I: in the foregoing equation denotes summation ovcf,mall values of il except
II = 0 The term corresponding to !l = 0 is excluded, because it is a trivial case, as It can be
seen l!dill equation (27).

We do not seek the solution of equation (24) in the form of Fourier series as we dId
for equation (23), because this leads to certain mathematical difficulties in satisfying the
boundary conditions.

Equation (24) can be written in (z, 0) as

2
2

~;~0!~(l + AZsinZO)+ 2Pi:~~~ 0) ), sin 0 +?F:~;, 0) [A. cos 0 + (I __ OPJ lZ F:J~;°l = o.

(31)

Following the lines of the method ofasymptotic integration of shell equations developed
by Gol'denveizer [7J, the solution of equation (31) is taken in the form

Fz(z, 0) = ePf(Z'OfGo(z, 0) +~ G 1(z, B) +;z Gz(z, 0)+ ...J (32)
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where
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[(0,0) = °
Substituting from equation (32) in equation (31), equating coefficients of fl" on botb

sides and making use of equation (33), we get

( ~?) = (i-l)(I+/,2 sm 2m- 1 114)
c.:;, z~ 0

Go(z, 0) is arbitrary, to be determined from boundary conditions. In the immedj~ ir' neigh
bourhood of z = 0, we can write from equation (33)

'(y)
[(z,O) ~ z(az ==(}

The real part of[(z, 0) is, therefore, negative, which is exactly what we expec: because
stresses in the edge load problem should decrease with increase in z. Apart from the solu
tion we have just obtained, equation (24) being a second order equation has another
solution; but this solution corresponds to stresses tending to infinity as z ->f:.. whIch is
not of interest to us.

There is one point which is worth notIcing here Fj represents a system :'Iresses
which decay slowly as we move away from the edge, whereas F2 corresponds to rapidly
decaying stresses. The solution of the governing equation is taken as a linear combination
of Fj and Fe'

The powers of f3 associated with FI and F2 in equation (35) are determined by a few
trials in satisfying the boundary conditions. From the original Donners equations [6J in
U, V and W, we have

(36)

1.371

Wand <I> are obtained by separating the real and imaginary parts in equation (351.
Substituting for W in equations (36) and (37), U and V-are obtained.

With the aid of equations (19H2l), (6HI3) and (29), the boundary conditions (l4H 16)
are expressed in terms of partial derivatives of Wand <I> with respect to z and O. The fourth
boundary condition (17) is also expressed in z and O. In the resulting four equations and
in the last boundary condition (18), we now substitute for W, <1>, U and V derived as in
the previous paragraph. In doing so, only terms involving the highest power of {J are
retained in each equation. Solution of these equations leads to

(38)

(39)
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Actually. only four boundary conditions (14), (15), (17) and (18) are enough to determine
the unknowns. The remaining boundary condition (16) is then automatically satisfied.

In determining the stresses, we will restrict ourselves to a narrow strip of width of the
order of vah in the neighbourhood of the plane of intersection, i.e. a zone in which
7 = OO/(3). The reason is that we get simple expressions for stresses and after all, we are
only mterested in this criticai zone, where the stresses are high. Taylor series expansions
H! :::. In this zone yield

(
Of) 2f(z, OJ = z -;;- + 0(1//3 )

.cz z=o

01(Z ()\ (01'\_!.-':;-' = ~ I +0(1/In
a~ oz) z=G

Go(z,O) = Go(O, A)+ 0(1//3).

From equation (27), we get to a first approximation

_ 4(1 + i) ( 1 \
k z - -~f3-+0 f32}'

4. RESULTS AND DISCUSSION

(40)

(41)

(42)

(43)

Stresses can be now determined to a first approximation. ~ and YJ represent the direc
tiom principal stresses at the plane of intersection (see Fig. 3). It is, therefore, useful to
deriv< expressions for stresses in these directions. By the usual transformation from
eqU:i (If;$ (2}--(4), the uniform membrane stresses due to internal pressure in ~ and YJ

di;.~'., ,\\'$ can be obtained:

(l +2A,z sin 2 8i
ije = . ,:.

, 2(1 +22 sir2 m
(2+22 sin 20)
2(T+}2si~j' iiJ)

(44)

(45)

(46)
_ Asin ()
T~~ = :2(1+)2 sin20)

Fro,,' equations (6}--(11), we can derive expressions for stress resultants in ~ and YJ direc
tions in terms of partial derivatives of Wand <1' with respect to Z and O. Substituting for
W an1 <1' in these relations from equation (35) and making use of equations (32), (34) and
(38H 43), we arrive at the following formulae for stresses in the residue problem. In deriving
these, only terms involving the highest power of f3 are retained in each expression, because
we have ignored 1//3 in comparison with unity throughout.

Stresses from the residue problem

o-~(membnne) = -!(1 + 22sin 20) - 1[22 cos 26 e -4zlfJ cos(4z//3) _),2 cos20 e -/,Z cos flZ] (47)

o-imembrane) = i/3A cos 0 e-/'Z(cos flz+sin flz) (48)
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T~~(membrane) =0 -±o + sin 20) I [e 1'= cos ,u.:;{ sm uei t ),1)_- sin 311:

+- ),3 e - 4011; cos(4z/I»(sin 3(1- sin

. _ 3/JA cos (I
O'~(bendmgl = [12(1- e-/iZ(cos liZ sin IE)

. 3vjJA cos 0
(J (bendmg) = ------- e-/iZ(cos pz sin pz)
~ [12(1 - V2 )]1

3(1- v)
T~~(twisting) = 2(1 +),2 sin18)[12(1_vlnl(e-1l0 sin pz{,P sin 30-sin 8(U+ti J

)]

+),3 e 4=lfJ sin(4z/PHsin 30-sin fJ)).

(49)

(50)

(51 )

(52)

Equations (50H52) refer to outer surface of the shelL In order to get the complete
solution, we have to add the uniform stresses due to internal pressure from equations
(44H46) to those due to the residue problem from equations (47H52).

If til is neglected when compared to unity for small values of rx, the solution derived
here becomes identical with those given in references [4] and [5].

Let us now compare the results with Van del' Neul's solution. It should be mentioned
here that Van del' Neui's method is different from the one used in this analysis and the
final solution is given in terms of (:2, 0). In comparing the two solutions, it should be kept
in mind that the solution for residue stresses, given by equations (47H52), is valid only
for z = 0(1//1) and in this zone 0 ~ 0 and Z ~ z cos ljJ. If the slowly decaying stresses are
omitted altogether and replaced by

(53)

this solution then reduces to Van del' Neul's solution [3]. Equation (53), as it was men
tioned earlier, is inadmissible; because it leads to a violation of the governing equations.

From equations (44), (45), (47), (48), (50) and (51), it can be observed that the non·
dimensional principal stresses are functions of three parameters rx, {j and v. In Figs. 6ll.
the principal stresses at z 0 are plotted in terms of rx and {3 for v = () 3. These figures
show that the stresses are more critical on the outer surface, because the membrane and
bending stresses have the same sign.

The principal stresses reach their maximum values on the outer surface at 0 = 0 and
z = 0, a point which is often called "Crotch". The stress concentration factor can, there
fore, be based on the stress values at this point. We now define a stress concentration factor
K as the ratio of an equivalent stress (J e to the hoop stress at z = 00, where the equivalent
stress 0'" based on distortion energy, is given in terms of the principal stresses 0'1 and
(Jl by

It can be shown that K is a function of only two parameters, {JA and v. Figure 10 shows the
stress concentration factor K plotted in terms of these two parameters. It can be seen
that K is almost a linear function of pA, except in a small range where P). is small. The
slight non-linearity for larger values of f3ti cannot be seen in the graph due to the scale
chosen.
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5. CONCLUDING REMARKS

891

The first approximation results presented in this analysis include errors of order
(hla)t. For instance, this would mean an error ofabout 10 per cent for a shell whose diameter
to thickness ratio is 200. This degree of accuracy is quite good from engineering point of
view, particularly in view of the fact that it is usually very difficult to arrive at simple closed
form solutions in such problems. A second approximation solution, for the same diameter
to thickness ratio, would mean an error of about 1 per cent which, for all practical pur
poses, might be considered to be a completely satisfactory solution. One might be now
tempted to think that it might be worthwhile proceeding to a second approximation. In
fact, considerable time was spent in trying to arrive at a second approximation solution.
Unfortunately, it was found that certain equations cannot be integrated in a closed form
as in the first approximation. The analysis was not continued further, because the object
of this entire investigation is to arrive at closed form solutions.
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AOCTpaKT-ITpHBOAIHCSI paC'IeT HanpllJKeHl1ti B MeCTC COCll,HHeHI1S1 lWYJ.. UHJIIIHil,pH'leCKHX o60JlO'leK

O,LIHHaKOro AHaMeTpa, COC,LIHHeHI1C o6pa3ycT nJTOCKOH JJTJTHnTH'IeCKHH TOpel.\, 060JlO'lKH nO,LIBepraIOTCIl

BHYTpeHHeMy AaBJleHHIO, Pe3YJlbTaTbi cnpaBC,LIJlHBbl AJlll BCCX B03MOJKHbiX 3Ha'lCHHM yrlIa MCJKil,Y OCllMH

JTHX ,LIBYX o60JlO'leK, )J,onycKalOTcll norpewHocTH 110pSl,LIKa (II/a) J, ruc h Ii a 0603Ha'ia1OT, COOTBeTCTBeHHO,

TOJlI.l\HHY Ii pa,LIHYc 0601IO'lKH, )J,alOTcSI PC3YlIbTaTbi B BH.ue npocTblX Q>OPMYJI unll HanpllJKeHHH B6nH3H

nnOCKOCTH COC,LIHHeHHIl, ITPliBOAHTCll rpaQ>liK, li3 KOToporo MOJKHO HenOCpC,LICTBeHHO OTC'II1TaTb Q>aKTop

KOHl.\eHTpal.\liH HanpSlJKeHHH, oCHoaaHHblH Ha JHcpnm il,HCTOpcHH, ll,nSl llllipOKoro pOAa napaMeTpoB,


